University of Minnesota
University of Minnesota
College of Biological Sciences
http://www.cbs.umn.edu/

David D. Thomas

Ph.D., Stanford University (H. McConnell) - Biophysics
Professor, BMBB
Telephone: 612-625-0957 Fax: 612-624-0632

Research Description

Our goal is to understand the fundamental molecular motions and interactions that are responsible for cellular movement, and to determine the molecular bases of muscle disorders. We approach this multidisciplinary problem with a wide range of techniques -- physiology, enzyme kinetics, molecular genetics, peptide synthesis, computer simulation -- but our forte is site-directed spectroscopic probes. After attaching site-directed probes (spin labels, fluorescent dyes, phosphorescent dyes, or isotopes) to selected muscle proteins in solution or in cells, we perform magnetic resonance or optical spectroscopy to directly detect the motions of the force-generating proteins, actin and myosin, or the membrane ion pumps and channels responsible for muscle excitation and relaxation.

Lab Website


Recent Publications

Muretta, J.M., A. Kyrychenko, A.S. Ladokhin, D. Kast, G.E. Gillispie, and D.D. Thomas. 2010. High-performance time-resolved fluorescence by direct waveform recording. Rev Sci Instrum, 81: 103101 (1-8).

Nesmelov, Y. E and David D. Thomas. 2010. Protein structural dynamics revealed by site-directed spin labeling and multifrequency EPR. Biophysi Rev, 2: 91-99.

Cornea, R.L., F.R. Nitu, M. Samso, D.D. Thomas, and B.R. Fruen. 2010. Mapping the ryanodine receptor (RyR) FK506-binding protein (FKBP) subunit using fluorescence resonance energy transfer (FRET). J Biol Chem, 285: 19219-19226. PMC2885200.

Kast, D., L. M. Espinoza-Fonseca, C. Yi, and D. D. Thomas. 2010. Phosphorylation-induced structural changes in smooth muscle myosin regulatory light chain. Proc Nat Acad Sci USA, 107: 8207-8212. PMC2889560. RLCFRET.

Prochniewicz, E., H.F. Chin, D.E. Hannemann, A.O. Olivares, D.D. Thomas, and E.M. De La Cruz. 2010. Myosin isoform determines the dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex. J Mol Biol, 396: 501-509. PMC2834967. AM5.

Becucci, L., R. Guidelli, C.B. Karim, D.D. Thomas, and G. Veglia. 2009. The role of sarcolipin and ATP in the transport of phosphate ion into the sarcoplasmic reticulum. Biophys J. 97: 2693-2699. PMC2776249. SLN+ATP.

Agafonov R, I. V. Negrashov, Y. Tkachev, S. Blakely, M. A. Titus, D. D. Thomas, and Y. E. Nesmelov. 2009. Structural dynamics of the myosin relay helix by time-resolved EPR and FRET. Proc Nat Acad Sci USA. 106: 21625-21630. PMC2799882. RELAYTR.

Hermanson, D., S.N. Addo, A.A. Bajer, J.S. Marchant, S.J.K. Das, B. Srinivasan, F. Al-Mousa, F. Michelangeli, D.D. Thomas, T.W. LeBien, and C. Xing. 2009. Dual mechanisms of sHA 14-1 in inducing cell death through endoplasmic reticulum and mitochondria. Mol Pharmacol. 76:667-78. PMC2730395. XING.

Becucci, L., A. Cembran, C.B. Karim, D.D. Thomas, R. Guidelli, J. Gao, and G. Veglia. 2009. On the function of pentameric phospholamban: ion channel or storage form? Biophys J. 96:L60-62. PMC2712152. PLBCHANNEL.

Balog, E.M., E.L. Lockamy, D.D. Thomas, and D.A. Ferrington. 2009. Site-Specific Methionine Oxidation Initiates Calmodulin Degradation by the 20S Proteasome (dagger). Biochemistry. 48: 3005-3016. PMCID: in process. PROCAM.

Prochniewicz, E., D. Henderson, J. M. Ervasti and D. D. Thomas. 2009. Dystrophin and utrophin have distinct effects on the structural dynamics of actin. Proc Nat Acad Sci U S A. 106:7822-7827. PMC2683112. DYSACTIN